Inversion of Rankin–Cohen operators via Holographic Transform
نویسندگان
چکیده
L’analyse des problèmes de branchement restrictions représentations fait émerger le concept transformation brisure symétrie et celui holographique. Les opérateurs diminuent nombre variables dans les modèles géométriques tandis que holographiques l’augmentent. Plusieurs développements en série ou intégrale l’analyse classique sont cas particuliers telles transformations.
منابع مشابه
Numerical inversion of Laplace transform via wavelet in ordinary differential equations
This paper presents a rational Haar wavelet operational method for solving the inverse Laplace transform problem and improves inherent errors from irrational Haar wavelet. The approach is thus straightforward, rather simple and suitable for computer programming. We define that $P$ is the operational matrix for integration of the orthogonal Haar wavelet. Simultaneously, simplify the formulaes of...
متن کاملNeutron Kinetics via Numerical Laplace Transform Inversion
A newly developed numerical Laplace transform inversion (NLTI) will be presented to determine the transient flux distribution within a subcritical fissile sample. The NLTI considered in this presentation has evolved to its present state over the past 10 years of application. The methodology adopted relies on the evaluation of the Bromwich contour through acceleration of the convergence of an in...
متن کاملCompact Operators via the Berezin Transform
In this paper we prove that if S equals a finite sum of finite products of Toeplitz operators on the Bergman space of the unit disk, then S is compact if and only if the Berezin transform of S equals 0 on ∂D. This result is new even when S equals a single Toeplitz operator. Our main result can be used to prove, via a unified approach, several previously known results about compact Toeplitz oper...
متن کاملMulticomplementary operators via finite Fourier transform
Abstract. A complete set of d + 1 mutually unbiased bases exists in a Hilbert spaces of dimension d, whenever d is a power of a prime. We discuss a simple construction of d+1 disjoint classes (each one having d−1 commuting operators) such that the corresponding eigenstates form sets of unbiased bases. Such a construction works properly for prime dimension. We investigate an alternative construc...
متن کاملInversion of Displacement Operators
We recall briefly the displacement rank approach to the computations with structured matrices, which we trace back to the seminal paper by Kailath, Kung, and Morf [J. Math. Anal. Appl., 68 (1979), pp. 395–407]. The concluding stage of the computations is the recovery of the output from its compressed representation via the associated displacement operator L. The recovery amounts to the inversio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l'Institut Fourier
سال: 2021
ISSN: ['0373-0956', '1777-5310']
DOI: https://doi.org/10.5802/aif.3386